Computer Vision and Deep Learning
Python Ecosystem

Bishesh Khanal, PhD
Research Scientist, NAAMII

Senior AI Scientist, Fusemachines
Visiting Researcher, King College London & Imperial College London

Python Users Group Nepal, Meetup #14
Kathmandu, Nepal
14 September, 2019

https://www.naamii.com.np
Nepal Winter School in AI

Academic Social Outreach

Startup Incubation & Industry Collaboration

Research

NAAMII
https://www.naamii.com.np
NAAMII
https://www.naamii.com.np

Application deadline coming soon!
https://nepalschool.naamii.com.np

Nepal Winter School in AI

Research

Academic Social Outreach

Startup Incubation & Industry Collaboration
Computer Vision

Deep Learning

Python Ecosystem for Machine Learning
Computer Vision: 3D Modeling

- Automatically compute 3D model from 2D images
Computer Vision: 3D Modeling

- Automatically compute 3D model from images

3D Model of a part of Zurich modeled from images – source VarCity, CVL – ETH Zurich

Bishesh Khanal and Ajad Chhatkuli. First Nepal Winter School in AI. 2018
Computer Vision: Traffic Understanding
Computer Vision: Disaster Area/Damage Identification

Fig. 1. (a) Pre-storm image (source: DigitalGlobe Co., Ltd.). (b) Post-storm Image (source: DigitalGlobe Co., Ltd.). (c). Field investigation information (source: Womble, 2005)

Radhika et al. Cyclone damage detection ... JWEIA 2015.
Fig. 2. (a) A sample building before cyclone damage. (b) After cyclone damage. (c) Non damaged portion marked in red outline. (d) Ground truth data of the same building (source: Womble, 2005). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Detection of Urban Damage Using Remote Sensing and Machine Learning Algorithms: Revisiting the 2010 Haiti Earthquake

Austin J. Cooner *, Yang Shao and James B. Campbell

Virginia Tech Department of Geography, 115 Major Williams Hall 220 Stanger St., Blacksburg, VA 24060, USA; yshao@vt.edu (Y.S.); jayhawk@vt.edu (J.B.C.)
* Correspondence: cooner@vt.edu; Tel.: +1-210-870-7909

Academic Editors: Roberto Tomas, Zhenhong Li and Prasad S. Thenkabail
Received: 5 August 2016; Accepted: 17 October 2016; Published: 20 October 2016

Abstract: Remote sensing continues to be an invaluable tool in earthquake damage assessments and emergency response. This study evaluates the effectiveness of multilayer feedforward neural networks, radial basis neural networks, and Random Forests in detecting earthquake damage caused by the 2010 Port-au-Prince, Haiti 7.0 moment magnitude (Mw) event. Additionally, textural and structural features including entropy, dissimilarity, Laplacian of Gaussian, and rectangular fit...
Computer Vision: Augmented Reality
Mixed Reality and Virtual Reality

MagicLeap demo

Laparoscopic video augmented with myomas

ENCoV - France
How do we see?
How do we LEARN to see?
How do we learn to see?

We move in order to see and see in order to move
William Gibson

source: Traveltourtrek
Nepal

We live in a 3D world

Bishesh Khanal and Ajad Chhatkuli. First Nepal Winter School in AI. 2018
How do we learn to see?

We move in order to see and see in order to move
William Gibson

We live in a 3D world

Three pillars of AI - data, learning and knowledge
-Fei Fei Li

source: Traveltourtrek Nepal

Bishesh Khanal and Ajad Chhatkuli. First Nepal Winter School in AI. 2018
How do we learn to see?

We move in order to see and see in order to move
William Gibson

We live in a 3D world

Not just about the eye, a mere sensor. Human Vision is done in the Brain!

source: Traveltourtrek Nepal

Three pillars of AI - data, learning and knowledge
-Fei Fei Li
From 3D world to 2D images
Image Formation

What we see

What machines see

Source: L. Fei Fei
What do we see?
What do we see?

Brain known to process at different levels.

Marr’s 3 levels:
- Primal sketch: edges, corners, regions: “features”
- 2.5 D sketch: texture, depth concept
- 3D model: the scene as we see it in a 3D world
Hand Engineering to Extract Features

Traditional approach (very popular: 1990’s - 2010)
- Extract features designed by engineers/researchers
- Use them to learn higher level semantics
Hand-Engineered Feature Extraction
Hand-Engineered Feature Extraction: Edge Detection
Hand-Engineered Feature Extraction: Threshold
Hand-Engineered Feature Extraction: Harris Corner
Hand-Engineered Feature Extraction: Harris Corner

Many more!
SIFT
SURF
ORB
LBP
Convolutional Filters ...

Easy to understand
No big data need
Fast if designed well
It is not an easy task!

Features depend on imaging conditions and hard to design “invariant” features
Relatively strong domain knowledge required
Computer Vision

Deep Learning

Python Ecosystem for Machine Learning
Learn from the data needed features & representation

Building block of feature extraction: convolution/filter/kernel

Learn these filters/weights from lot of data on a given task as required
Deep Convolutional Neural Networks most popular

http://cs231n.github.io/convolutional-networks/
Deep Convolutional Neural Networks most popular

CNNs

Regular 3 layer network

Convnet arrangement in 3D

Transforms input 3D volume into output 3D volume

E.g. Input of 3 Channels R,G,B; image of size height X width
Example Applications
Example Applications

Are neural networks and CNNs new?

NNs from 1950s, CNNs from 70s, but optimizing them was a challenge!!

How come they are so popular now?
Why Deep Learning worked now?

10 years rapidly expanding use of Internet: BIG DATA availability

Massive improvement in Hardware (GPUs)

Advancement in optimization techniques

Great open-source software frameworks to run on those GPUS (mostly python based)
Why Deep Learning worked now?

10 years rapidly expanding use of Internet: BIG DATA availability

Massive improvement in Hardware (GPUs)

Advancement in optimization techniques

Great open-source software frameworks to run on those GPUS (mostly python based)

Not everything solved!!
Less data and learn, Unsupervised learning, best representation
Generalization
Interpretability
Computer Vision

Deep Learning

Python Ecosystem for Machine Learning
```python
import cv2
import numpy as np

img = cv2.imread('imagel.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 3, 0.04)

# result is dilated for marking the corners, not important
dst = cv2.dilate(dst, None)

# Threshold for an optimal value,
# it may vary depending on the image.
# img[dst>0.01*dst.max()]=[0,0,255]
img[dst>0.001*dst.max()]=[0,0,255]

cv2.imshow('dst', img)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

import mmdet.apis

config_file = 'mmdetection/configs/faster_rcnn_r50_fpn_1x.py'
checkpoint_file = '../mmdetection/checkpoints/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth'
model = init_detector(config_file, checkpoint_file, device='cuda:0')

img = 'results/Kathmandu-Traffic.jpg'
result = inference_detector(model, img)
show_result(img, result, model.CLASSES, out_file='results/Kathmandu-Traffic-out.jpg')
```
Python for Deep Learning

11

Deep Learning With Python Libraries and Frameworks

Python for Scientific Computing & Data Science

http://www.focusedsupport.com/blog/getting-setup-with-scientific-python/
Internships and vacancies at NAAMII announcing soon

https://www.naamii.com.np/
https://twitter.com/naamii_nepal
https://www.facebook.com/naamiiNepal

Second Nepal Winter School in AI

10-20 December, 2019
Pokhara, Nepal

Application for Participation now open !!!
Limited Scholarships and Travel Grants Available !!!