
WRITING PYTHONIC CODES

Filling your holes in python.

@regmicmahesh

FUNTOOLS FUNCTOOLS

 The functools module is for higher-order functions: functions that act on or return
other functions. In general, any callable object can be treated as a function for the
purposes of this module.

 This is also known as “currying”, a term named after FP pioneer Haskell Curry.

 Let’s start with what is functional programming.

PARTIAL FUNCTION

 Partial function are decorated function in which some arguments are already
supplied.

 In other words, it modifies a function in such a way not every parameter is
required in new function calls.

Keep in mind, it doesn’t change
docstrings, execution order or properties
of the functions, it just decorates to use
those kwargs everytime in function call.

DECORATES? WHAT?

 When I decorate, I take the function and can modify what happens before the
function call and what happens after the function call.

 I also may never call the function.

 Just a little but powerful feature enabled due to higher order functions.

Takes a
function

Makes a
new

function

Calls the
taken

function
in new

function.

Returns
the new
function

A LITTLE USEFUL EXAMPLE..

CONCLUDING…

 You can research further about nesting decorators, repeating decorators and also
stacking decorators.

 Decorators is a cool concept which lets you make a base function and use that
function is a variety of ways.

 Think of the login, auth decorators in Django as an example.

Just a little technical warning, classes decorators also exists. But generally decorators
are used with functions.

CLASSES (WITH DATA)

JUST A SIMPLE CLASS.

 Just making sure we all have a fundamental understanding
of class.

 __init__ is called dunder method (as it starts with double
underscore) also known as initializer or constructor.

SOME THINGS HERE TO CONSIDER.

 new is the first method called which creates you the object and passes to _init_
so your properties are initialized there.

 If the same attribute name occurs in both an instance and in a class, then attribute
lookup prioritizes the instance.

 You can define private attributes with double underscore which is renamed to
_classname__attrName.

 This is done to keep it hidden from out of the class and never use such variables in
your code outside the class. (even if the class is yours)

CALLABLE CLASS METHOD

Aren’t all class callable ? What do you mean?

 Well yes but actually no.

 By callable class I mean the object can be made callable just by a simple dunder (magic)
method.

 You can use wrapper functions to do
same thing but classes are more
flexible.

WHEN TO USE CALLABLE CLASS ?

 If your class has a certain function to cover.

 Your function is getting so messy you want to organize your function as a class to
keep things simple.

BUT THE FUNCTION LOOKS BETTER IN THIS
CASE ?

 Think you’re measuring ten thousands of animals as per the client’s demand.

 Your program grows and you need to check if animal is dead, if animal is eating
and much more. i.e. your program won’t scale if you’re using functions.

DATACLASSES.

 How many times have you used python classes to simulate behavior similar to
struct in python?

 I guess this is how you define it.

 It’s correct but that’s not what all you want.

 If you want to check if two records are equal python will always tell you no they’re
not as two instances are never same unless you define _eq_ and customize how
python compares yourself.

 When you add a new property to your class, you need to write code in both _init_
and initialize there.

 Your class won’t have good representation when you print you’ll get something
like <object blahblah>

 Now when you make a variable, you will get a good representation and you can
compare between two objects.

FURTHER MORE…

 This gets really useful when you are writing an ORM or structuring your data to be
really flexible and strict at same time.

 Keep in mind, these are also just a plain class you can have methods of a.

 Make sure don’t write your own constructor or use _post_init_.

And we finish here

@PROPERTY

@PROPERTY DECORATOR

 Pythonic way of getters and setters.

 All the work of hiding the variable and providing methods for access is done by
property.

 Don’t pollute your class namespace with get_property and set_property.

 Your property is overridden and getter and setter will always be called no matter
however and wherever you access the property.

 You can use the method way, but decorator is lot simpler and efficient.

COLLECTIONS

DICT (BUT MORE THAN DICT)

 You know dict right ?

 It has a key-value pair. That’s a basic understanding of dict. Turns out python
offers you some convenient varieties of dict.

 I’ve used defaultdict almost everywhere but most of the people have no idea what
it is. (I’ll explain)

 Isn’t it cool ? How many times you’ve struggled to have a dictionary with every
values as list, well not anymore.

DEQUE

 You all have worked with lists and you know the headache when you need to add
items in front of the list frequently.

 Above problem can be solved with some functions but what if you also need to
rotate your list frequently?

 Straight from the docs, though list objects support similar operations, they are
optimized for fast fixed-length operations and incur O(n) memory movement
costs for pop(0) and insert(0, v) operations which change both the size and
position of the underlying data representation.

NAMEDTUPLE

 Just a well documented tuple.

 Isn’t it cool if each values of your tuple have their own names and also with
flexibility of a normal tuple.

 It’s same as dataclasses but you don’t need to worry about making a whole new
class just if you want your tuple to be documented.

THAT’S ALL ! :D

I hope you’ll utilize these things in your code from today and happy python-ing.

ENDING…

@regmicmahesh Cross Platform Full Stack Developer

Thank you so much!

